

# NZYTaq II DNA polymerase

Catalogue number: MB35401, 500 U

MB35402, 1000 U MB35403, 2500 U

#### **Description**

NZYTaq II DNA polymerase belongs to a new generation of *Taq*-derived DNA polymerases optimized for standard PCR applications. The enzyme was engineered to produce high DNA yields in shorter PCR running times (15-30 s/kb extension) under minimal optimization conditions. NZYTaq II DNA polymerase lacks 3′→5′ exonuclease activity and supports the robust and reliable amplification of a wide range of DNA templates up to 6 kb. The enzyme was optimized to provide higher sensitivity, allowing amplification of different DNA fragments from as little as 5 pg of human genomic DNA. Resulting PCR products have an A-overhang and are suitable for cloning with NZYTech's TA PCR cloning kits (MB053 or MB137).

#### Storage temperature

NZYTaq II DNA polymerase should be stored at -20 °C in a constant temperature freezer. NZYTaq II DNA polymerase will remain stable till the expiry date if stored as specified.

#### **Unit definition**

One unit is defined as the amount of enzyme required to catalyse the incorporation of 10 nmoles of dNTPs into acid insoluble material in 30 minutes at 72 °C.

Enzyme concentration: 5 U/µL

**Magnesium Chloride solution:** the provided 50 mM MgCl<sub>2</sub> solution allows users to optimize Mg<sup>2+</sup> concentration in different PCR set ups. In general, NZYTaq II DNA polymerase works effectively with a 2.5 mM MgCl<sub>2</sub> concentration. Vortex the MgCl<sub>2</sub> solution thoroughly after thawing.

# **Standard Protocol**

The following standard protocol serves as a general guideline and a starting point for any PCR amplification. Optimal reaction conditions (e.g. concentration of DNA polymerase, primers, MgCl<sub>2</sub> and template DNA) may vary, although PCR optimization is usually not required. In case you need to fine-tune PCR conditions, recommended variations of each PCR component are provided in brackets in the table below.

**1.** Gently mix and briefly centrifuge all components after thawing. On ice, in a sterile, nuclease-free microcentrifuge

tube, prepare a mixture for the appropriate number of PCR reactions. Add water first and the remaining components in the order specified in the table below. A single reaction mixture of  $50~\mu L$  should combine the following components:

| Reaction buffer, 10× (provided)      | 5 μL                    |  |
|--------------------------------------|-------------------------|--|
| MgCl <sub>2</sub> , 50 mM (provided) | rided) 2.5 (1.5-4.0) mM |  |
| dNTPs mix                            | 0.4 (0.25-0.5) mM       |  |
| Primers (see below)                  | 0.25 (0.1-0.5) µM       |  |
| Template DNA (see below)             | 5 pg-0.5 μg             |  |
| NZYTaq II (5 U/μL)                   | 0.25-1 μL               |  |
| Nuclease-free water                  | up to 50 μL             |  |

- 2. Mix and quickly pulse the reactions.
- 3. Perform PCR using the following cycling parameters:

| Cycle step           | Temp. | Time       | Cycles |
|----------------------|-------|------------|--------|
| Initial denaturation | 95 °C | 3 min      | 1      |
| Denaturation         | 94 °C | 30 s       |        |
| Annealing            | *     | 30 s       | 25-35  |
| Extension            | 72 °C | 15-30 s/kb |        |
| Final Extension      | 72 °C | 5-10 min   | 1      |

<sup>\*</sup>Annealing temperature should be optimized for each primer set based on the primer  $T_m$ ; typically it should be  $T_m$ -5 °C.

**4.** Analyse PCR products through agarose gel electrophoresis (0.7-1.2%, w/v) and visualise with GreenSafe Premium (MB132) or any other means.

# **Primer Design**

PCR primers generally range in length from 15–30 bases and are designed to flank the region of interest. Primers should contain 40–60% GC, and care should be taken to avoid sequences that might produce internal secondary structure. The 3´-ends of the primers should not be complementary to avoid the production of primer-dimers. Primer-dimers unnecessarily remove primers from the reaction and result in an unwanted polymerase reaction that competes with the desired reaction. Avoid three G or C nucleotides in a row near the 3´-end of the primer, as this may result in non-specific primer annealing. Ideally, both primers should have nearly identical melting temperatures (T<sub>m</sub>), allowing their annealing with the denatured template DNA at roughly the same temperature.

# **DNA template**

The optimal amount of starting material may vary depending on the quality and complexity of template DNA. In general, we recommend using 20-500 ng of genomic DNA templates, although the enzyme is sensitive enough to amplify DNA fragments from as little as 5 pg of human gDNA, for example. Lower amounts of DNA template (typically 1-20 ng) may be used for amplification of lambda or plasmid DNA or even 5-20 ng for amplification of multicopy chromosomal

genes. When using a cDNA synthesis reaction as template do not exceed 10% of the final PCR reaction volume.

# **Quality control assays**

#### **Purity**

NZYTaq II DNA polymerase purity is >90% as judged by SDS polyacrylamide gel electrophoresis followed by Coomassie Blue staining.

#### **Genomic DNA contamination**

NZYTaq II DNA polymerase must be free of any detectable genomic DNA contamination as evaluated through PCR.

#### **Nuclease assays**

0.2-0.3  $\mu$ g of pNZY28 plasmid DNA are incubated with 5 U of NZYTaq II DNA polymerase, in 1× Reaction Buffer, for 14-16 hours at 37 °C. Following incubation, the DNA is visualised on a GreenSafe Premium-stained agarose gel. There must be no visible nicking or cutting of the nucleic acid. Similar tests are performed with NZYTaq II reaction buffer and MgCl<sub>2</sub> solution.

#### **Functional assay**

NZYTaq II DNA polymerase is extensively tested for performance in a polymerase chain reaction (PCR) of different-sized DNA fragments (1 and 2.5 kb) from human genomic DNA in the presence of 10× Reaction Buffer and MgCl<sub>2</sub> solution. The resulting PCR products are visualized as single bands in a GreenSafe Premium-stained agarose gel.

# **Troubleshooting**

#### No product amplification or low yield

• Inadequate annealing temperature

The reaction mix composition may affect the melting properties of primers and DNA. Adjust the annealing temperature to accommodate the primer with the lowest melting temperature (5 °C to 10 °C lower than  $T_m$ ).

#### • Presence of PCR inhibitors

Some DNA isolation procedures, particularly genomic DNA isolation, can result in the co-purification of PCR inhibitors. Reduce the volume of template DNA in reaction or dilute template DNA prior to adding to the reaction. Diluting samples even 1:10,000 has been shown to be effective in improving results, depending on initial DNA concentration.

## • Additives required

Adding PCR-enhancing agents (NZYTaq 5× Optimizer Solution – MB060 or NZYTaq 2× GC-Enhancer Solution – MB143) may improve yield while allowing the amplification of difficult templates.

# Presence of non-specific bands

• Non-specific annealing of primers

Adjust annealing conditions and/or design another set of primers, by increasing the length and avoiding complementary sequences.

## • Mg<sup>2+</sup> concentration is too high

Generally, 2-3 mM MgCl $_2$ , typically 2.5 mM final concentration, works well for the majority of PCR reactions. Optimal concentration depends on target template, buffer and dNTPs. Optimize magnesium concentration by supplementing MgCl $_2$  in 0.5 increments up to 4 mM.

Revised 06/17

| Certificate of Analysis    |        |  |  |
|----------------------------|--------|--|--|
| Test                       | Result |  |  |
| Enzyme purity*             | Pass   |  |  |
| Genomic DNA contamination* | Pass   |  |  |
| DNase contamination        | Pass   |  |  |
| Functional assay           | Pass   |  |  |

<sup>\*</sup>These assays were performed exclusively with the enzyme

Approved by:

José Prates

Senior Manager, Quality Systems

